-
Dannert, M. M.
(2023):
Numerical Treatment of Imprecise Random Fields in Non-Linear Solid Mechanics,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 23/01
ISBN:
978-3-935732-57-4
-
Hammad, M.
(2022):
Anisotropic Damage Modelling of Concrete at Meso-scale,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 22/02
ISBN:
978-3-935732-56-7
-
Funk, S.
(2022):
Support Vektor Regression für Anwendungen im Bereich der Elasto-Plastizität,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 22/01
ISBN:
978-3-935732-55-0
Description:
-
Zhang, W.
(2021):
Stochastic Modelling and Numerical Simulation of Fatigue Damage,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 21/02
ISBN:
978-3-935732-54-3
Description:
-
Bittens, M.
(2021):
A Parametric Modeling Concept for Predicting Biomechanical Compatibility in Total Hip Arthroplasty,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 21/01
ISBN:
978-3-935732-53-6
Description:
-
Palanichamy, T. A.
(2020):
A Coupled ALE Lagrangian Approach for the Simulation of Treaded Tires,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F20/03
ISBN:
978-3-935732-52-9
Description:
-
Alameddin, S.
(2020):
A Semi-incremental Model Order Reduction Approach for Fatigue Damage Computations,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 20/02
More info
ISBN:
978-3-935732-51-2
Description:
-
Beurle, D.
(2020):
A Micro-mechanically Motivated Approach for Modelling the Oxidative Aging Process of Elastomers,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 20/01
More info
ISBN:
978-3-935732-50-5
Description:
-
Narayanan, G.
(2018):
A stochastic fatigue model for casted aluminium structures,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 18/5
More info
ISBN:
978-3935732-49-9
Description:
-
Möhle, M.
(2018):
Numerical investigation on hydrogen embrittlement of metallic pipeline structures,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 18/3
More info
ISBN:
978-3-935732-48-2
Description:
-
Bhattacharya, M.
(2018):
A model reduction approach in space and time for fatigue damage simulation,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 18/2
More info
ISBN:
978-3-935732-47-5
Description:
-
Jha, N. K.
(2018):
Modelling and numerical simulation for the prediction of the fatigue strength of airsprings,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 18/1
More info
ISBN:
978-3-935732-46-8
Description:
-
Grehn, M.
(2017):
Probabilistische Finite Element Modellierung des mechanischen Materialverhaltens von Salzgestein,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 17/4
More info
ISBN:
978-3-935732-45-1
Description:
-
Beyer, R.
(2017):
A constitutive contact model for homogenized tread-road interaction in rolling resistance computations,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 17/2
More info
ISBN:
978-3-935732-44-4
Description:
-
Shirazibeheshtiha, S.
(2017):
Computational simulation of piezo-electrically stimulated bone adaption surrounding activated teeth implants,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 17/1
More info
ISBN:
978-3-935732-43-7
Description:
-
Jahjouh, Mahmoud M
(2016):
A modified adaptive harmony search algorithm approach on structural identification and damage detection,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 16/1
More info
ISBN:
978-3-935732-42-0
Description:
-
Fadi Aldakheel
(2016):
Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture,
Stuttgart: Institut für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart
More info
DOI:
http://dx.doi.org/10.18419/opus-8803
ISBN:
978-3-937859-22-4
Description:
<p>The underlying work is concerned with the development of physically-motivated constitutive models for the description of size effects within the context of inelastic deformations. A key aspect of this thesis is to develop a theoretical and computational framework for gradient-extended dissipative solids. It incorporates spatial gradients of selected micro-structural fields that account for length scale effects and describe the evolving dissipative mechanisms. In contrast to classical theories of local continuum mechanics, where the internal variables are determined by ordinary differential equations (ODEs), these global micro-structural (order parameter) fields are governed by partial differential equations (PDEs) and boundary conditions reflecting the continuity of these variables. The proposed framework for gradient-extended dissipative solids is first used to address the development of phenomenological theories of strain gradient plasticity. The corresponding model guarantees from the computational side a mesh-objective response in the post-critical ranges of softening materials. In this regard, a mixed variational principle for the evolution problem of gradient plasticity undergoing small and large strains is developed. A novel finite element formulation of the coupled problem incorporating a long-range hardening/softening parameter and its dual driving force is also proposed. A second employment of the introduced framework is related to the thermo-mechanical coupling in gradient plasticity theory within small strain deformations. Two global solution procedures for the thermo-mechanically coupled problem are introduced, namely the product formula algorithm and the coupled-simultaneous solution algorithm. For this purpose, a family of mixed finite element formulations is derived to account for the coupled thermo-mechanical boundary-value problem. A further application of the proposed framework deals with the phase-field modeling of ductile fracture undergoing large strains. To this end, a novel variational-based framework for the phase-field modeling of ductile fracture in gradient-extended elastic-plastic solids is proposed. Herein, two independent length scales, that regularize both the plastic response as well as the crack discontinuities, are introduced. This ensures that the failure zone of ductile fracture takes place inside the plastic zone, and guarantees from the computational perspective mesh objectivity in the post-critical range. The performance of these models is tested on a broad range of homogeneous and heterogeneous representative numerical simulations.</p>
-
Stegen, O.
(2015):
A Fully Micro-mechanically Motivated Material Law for Filled Elastomer,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 15/3
More info
ISBN:
978-3-935732-41-3
Description:
-
Fink, S.
(2015):
Simulation of Elastic-Plastic Material Behaviour with Uncertain Ma-terial Parameters. A Spectral Stochastic Finite Element Method Approach,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 15/2
More info
Description:
-
Sapotnick, A.
(2015):
On a Finite Element Approach for the Solution of a Mechanically Stimulated Biochemical Fracture Healing Model,
Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität Hannover, F 15/1
More info
ISBN:
978-3-935732-39-0
Description: