Dr. Zhibao Zheng
Dr. Zhibao Zheng
Dr. Zhibao Zheng
-
Research Interests
- Stochastic finite element method
- Random field simulation
- Reliability analysis
- Fractional calculus
-
Academic experience and education
November 2021 – Present Postdoctoral research at IBNM, Leibniz University Hannover, Germany January 2020 – October 2021 Postdoctoral research at School of Civil Engineering, Harbin Institute of Technology, China August 2015 – December 2019 PhD candidate in Engineering Mechanics at Harbin Institute of Technology, China August 2011 – July 2015 Bachelor in Civil Engineering at Harbin Institute of Technology, China -
Honors and awards
Alexander von Humboldt Fellow, 2021 Outstanding Doctoral Dissertation Award, 2021 Title of dissertation: A new method for solving stochastic finite element equations and its applications, Harbin Institute of Technology
Outstanding Undergraduate Dissertation Award, 2015
Title of dissertation: A new fractional wavelet transform, Harbin Institute of Technology
Article
-
(2024): A stochastic LATIN method for stochastic and parameterized elastoplastic analysis, Computer Methods in Applied Mechanics and Engineering, Band 419, Seiten 116613 Weitere Informationen
DOI: https://doi.org/10.1016/j.cma.2023.116613 -
(2023): Efficient structural reliability analysis via a weak-intrusive stochastic finite element method, Probabilistic Engineering Mechanics, Band 71, Seiten 103414 Weitere Informationen
DOI: https://doi.org/10.1016/j.probengmech.2023.103414 -
(2023): A stochastic finite element scheme for solving partial differential equations defined on random domains, Computer Methods in Applied Mechanics and Engineering, Band 405, Seiten 115860 Weitere Informationen
DOI: https://doi.org/10.1016/j.cma.2022.115860 -
(2023): A nonlinear stochastic finite element method for solving elastoplastic problems with uncertainties, International Journal for Numerical Methods in Engineering, Band 124, Ausgabe 16, Seiten 3411-3435 Weitere Informationen
DOI: https://doi.org/10.1002/nme.7253 -
(2023): Semi-reduced order stochastic finite element methods for solving contact problems with uncertainties, Computational Mechanics, Band 72, Seiten 991–1008 Weitere Informationen
DOI: https://doi.org/10.1007/s00466-023-02323-w -
(2023): Simulation of random fields on random domains, Probabilistic Engineering Mechanics, Band 73, Seiten 103455 Weitere Informationen
DOI: https://doi.org/10.1016/j.probengmech.2023.103455 -
(2023): Stochastic virtual element methods for uncertainty propagation of stochastic linear elasticity, Computational Mechanics, Seiten 1-18 Weitere Informationen
DOI: https://doi.org/10.48550/arXiv.2305.04253 -
(2023): An iterative multi-fidelity scheme for simulating multi-dimensional non-Gaussian random fields, Mechanical Systems and Signal Processing, Band 200, Seiten 110643 Weitere Informationen
DOI: https://doi.org/10.1016/j.ymssp.2023.110643 -
(2022): An efficient reduced‐order method for stochastic eigenvalue analysis, International Journal for Numerical Methods in Engineering, Band 123, Ausgabe 23, Seiten 5884-5906 Weitere Informationen
DOI: https://doi.org/10.1002/nme.7092 -
(2022): A weak-intrusive stochastic finite element method for stochastic structural dynamics analysis, Computer Methods in Applied Mechanics and Engineering, Band 399, Seiten 115360 Weitere Informationen
DOI: https://doi.org/10.1016/j.cma.2022.115360 -
(2021): A sample-based iterative scheme for simulating non-stationary non-Gaussian stochastic processes, Mechanical Systems and Signal Processing, Band 151, Seiten 107420 Weitere Informationen
DOI: https://doi.org/10.1016/j.ymssp.2020.107420 -
(2021): Structural stochastic responses determination via a sample-based stochastic finite element method, Computer Methods in Applied Mechanics and Engineering, Band 381, Seiten 113824 Weitere Informationen
DOI: https://doi.org/10.1016/j.cma.2021.113824 -
(2019): A new definition of fractional derivative, International Journal of Non-Linear Mechanics, Band 108, Seiten 1-6 Weitere Informationen
DOI: https://doi.org/10.1016/j.ijnonlinmec.2018.10.001 -
(2019): An explicit method for simulating non-Gaussian and non-stationary stochastic processes by Karhunen-Loève and polynomial chaos expansion, Mechanical Systems and Signal Processing, Band 115, Seiten 1-13 Weitere Informationen
DOI: https://doi.org/10.1016/j.ymssp.2018.05.026 -
(2018): A new fractional equivalent linearization method for nonlinear stochastic dynamic analysis, Nonlinear Dynamics, Band 91, Seiten 1075-1084 Weitere Informationen
DOI: https://doi.org/10.1007/s11071-017-3929-8 -
(2017): On generalized fractional vibration equation, Chaos, Solitons & Fractals, Band 95, Seiten 48-51 Weitere Informationen
DOI: https://doi.org/10.1016/j.chaos.2016.12.006 -
(2017): A new fractional wavelet transform, Communications in Nonlinear Science and Numerical Simulation, Band 44, Seiten 19-36 Weitere Informationen
DOI: https://doi.org/10.1016/j.cnsns.2016.06.034 -
(2017): Nonlinear system stochastic response determination via fractional equivalent linearization and Karhunen–Loeve expansion, Communications in Nonlinear Science and Numerical Simulation, Band 49, Seiten 145-158 Weitere Informationen
DOI: https://doi.org/10.1016/j.cnsns.2017.01.033 -
(2017): Simulation of multi-dimensional random fields by Karhunen–Loève expansion, Computer Methods in Applied Mechanics and Engineering, Band 324, Seiten 221-247 Weitere Informationen
DOI: https://doi.org/10.1016/j.cma.2017.05.022