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A Newton-Krylov Discontinuous Galerkin Compressible Flow Solver
Using an Automatic Differentiation Derived Jacobian

Higher-order Discontinuous Galerkin (DG) discretization is applied with success in computational fluid dynam-
ics (CFD) [1] (see Figure 1). DG discretization is attractive because it has several advantages, such as lower
dispersion, more natural treatment of the convective operators, the higher extending potential for higher-order
discretization, higher parallelization capacity, and better h/p refinement capability. Despite those apparent at-
tractive advantages, the number of practical problems solved by explicit DG is very small because of convergence
issues. The development of fully implicit discretization for reducing the computational cost of DG methods has
been a topic of attention recently [2].

Figure 1: Transonic flow around a NACA0012 airfoil at Mach 0.8 and angle of attack of 1.25.



The Newton method is generally applied to non-linear problems which are linearized exactly. The main advantage
of the Newton method is the ability to take very large time-steps and quadratic convergence when starting from a
good initial guess. The linear system of equations arising from the linearization of a fully implicit scheme is solved
by iterative solution methods. One of the most advanced iterative methods, the Krylov subspace technique has
been employed for solving the non-linear system of equation.

In the Newton method, the Jacobian matrix is needed not only for forming the linear system but also for building
the preconditioner matrix, and it is one of the most expensive parts of the implicit solver. The convergence rate of
the implicit solver depends on the accuracy and correctness of the Jacobian matrix. In automatic differentiation
(AD), the Jacobian can be computed automatically especially for flows with complex flux functions [3]. This
method is an emerging technology for differentiating functions that enable derivatives to be computed accurately
without any truncation error improving the robustness of the CFD solvers. Moreover, the AD approach was used
to calculate the Jacobians of functions as accurate as exact Jacobian. The AD is used not only for residual
differentiation but also for differentiation of other parameters such as derivatives of wing drag, lift and pitching
moment coefficients, dissipation terms of turbulence modeling, wing shape optimization and shape optimization
for fluids. The goal of this thesis is using AD derived Jacobian for DG methods.

Within the scope of this thesis, the student should study and implement different schemes for computing Jacobian
(such as the AD, Matrix-Free and Finite difference method). The convergence rate and memory used of solver
at different degrees and flow regimes will be analyzed and discussed. Finally, he or she should indicate how one
could combine these methods to improve Newton-Krylov Discontinuous Galerkin solver.

Required knowledge includes an interest in mathematical modeling, finite element methods (preferably one has
taken the DG class at IBNM) and scientific computing. In addition, programming skills with a background in
discretization methods are required. This thesis will be supervised in English.
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