InstituteThe team
Rene Hiemstra

Dr. René Rinke Hiemstra

Dr. René Rinke Hiemstra
Address
Appelstraße 9a
30167 Hannover
Building
Room
802
Dr. René Rinke Hiemstra
Address
Appelstraße 9a
30167 Hannover
Building
Room
802
Research Project
  • Research focus

    My research focus is on the development and implementation of novel discretization techniques to overcome limitations of today's standard numerical methods in computational structural and fluid mechanics. A central theme in all my research is the improvement of the design-to-analysis process by means of isogeometric analysis. Within this context I have worked on higher order accurate compatible discretization techniques for computational fluid dynamics, developed scalable and efficient formation and assembly techniques for both fluids and structures, and developed surface meshing techniques that improve the exchange between computer aided design (CAD), finite element analysis (FEA) and computer aided manufacturing (CAM).  

  • Education

    2019

    Ph.D. in Computational Science, Engineering and Mathematics

    Oden Institute for Computational Engineering and Sciences University of Texas at Austin, USA Supervisor: Prof. Dr. Thomas JR Hughes

     

    Dissertation: https://repositories.lib.utexas.edu/handle/2152/78802?show=full

    2015 

    M.Sc. in Computational Science, Engineering and Mathematics (2015)

     

    Oden Institute for Computational Engineering and Sciences University of Texas at Austin, USA

     

    2011 

    M.Sc. Marine Technology

     

    Department of Marine Technology Delft University of Technology, Netherlands

     

    2009 

    B.Sc. Marine Technology (2009)

     

    Department of Marine Technology Delft University of Technology, Netherlands

     

  • Journal publications
    2020

    Hiemstra, RR ., Hughes, TJ, Manni, C., Speleers, H. and Toshniwal, D., 2020. A Tchebycheffian Extension of Multidegree B-Splines: Algorithmic Computation and Properties. SIAM Journal on Numerical Analysis58 (2), pp.1138-1163.            

    Toshniwal, D., Speleers, H.,   Hiemstra, RR  ., Manni, C. and Hughes, TJ, 2020. Multi-degree B-splines: Algorithmic computation and properties. Computer Aided Geometric Design76, p.101792.       

    2019

     

    Hiemstra, RR  , Sangalli, G., Tani, M., Calabrò, F. and Hughes, TJ, 2019. Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity. Computer Methods in Applied Mechanics and Engineering355, pp.234-260.

    2018

     

    Evans, JA,  Hiemstra, RR  , Hughes, TJ and Reali, A., 2018. Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Computer Methods in Applied Mechanics and Engineering338, pp.208-240.         

    Marussig, B.,  Hiemstra, R.  and Hughes, TJ, 2018. Improved conditioning of isogeometric analysis matrices for trimmed geometries. Computer Methods in Applied Mechanics and Engineering, 334, pp.79-110.

    2017

     

    Toshniwal, D., Speleers, H.,  Hiemstra, RR  and Hughes, TJ, 2017. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering316, pp.1005-1061.         

    Hiemstra, RR  , Calabro, F., Schillinger, D. and Hughes, TJ, 2017. Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering316, pp.966-1004.

    2015

     

    Schillinger, D., Evans, JA, Frischmann, F.,  Hiemstra, RR  , Hsu, MC and Hughes, TJ, 2015. A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. International Journal for Numerical Methods in Engineering, 102  (3-4), pp.576-631.

    2014

     

    Hiemstra, RR  , Toshniwal, D., Huijsmans, RHM and Gerritsma, MI, 2014. High order geometric methods with exact conservation properties. Journal of Computational Physics257, pp.1444-1471.

    Palha, A., Rebelo, PP,  Hiemstra, R.  , Kreeft, J. and Gerritsma, M., 2014. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, 257, pp.1394-1422.