Logo Leibniz Universität Hannover
Logo: Institut für Baumechanik und Numerische Mechanik/Leibniz Universität Hannover
Logo Leibniz Universität Hannover
Logo: Institut für Baumechanik und Numerische Mechanik/Leibniz Universität Hannover
  • Zielgruppen
  • Suche
 

IBNM expertise about ...

Stochastic Finite Element Method

Computational techniques for the stochastic excitation of rolling tires from rough road surface contact

Bild zum Projekt Computational techniques for the stochastic excitation of rolling tires from rough road surface contact

Bearbeitung:

Robert Lee Gates, M.Sc.; Prof. Dr.-Ing. Udo Nackenhorst

Förderung durch:

DFG (German Research Foundation)

Kurzbeschreibung:

In this project, we intend to address issues in modeling rolling tires on rough road surfaces by (a) extending previously developed methods by a stochastic excitation function describing the interaction of the macroscopic tire model and the detailed meso-mechanical contact behavior of the tire tread with the road surface; (b) including dynamic stiffening effects in the rubber compound.

 

| details |

 

Stochastic Modeling of Fatigue Processes

 

Leitung:

Prof. Dr. Ing. Udo Nackenhorst

Bearbeitung:

M. Sc. Wei Ran Zhang, Dr. Ing. Amelie Fau

Laufzeit:

2016-2019

Förderung durch:

International Research Training Group 1627, DFG (German Research Foundation)

 

| details |

 

A Stochastic Approach on Stress Adaptive Bone Remodeling

Bild zum Projekt A Stochastic Approach on Stress Adaptive Bone Remodeling

Bearbeitung:

Maximilian Bittens, M.Sc.; Prof. Dr.-Ing. Udo Nackenhorst

Kurzbeschreibung:

In this project the uncertainties in stress adaptive bone remodeling are addressed. Accounting for these uncertainties stochastic techniques like Polyomial Chaos Expansion or Stochastic Collocation Methods are used in order to build a stochastic response surface for evaluating the stochastic properties, e.g. sensitivity, of the system.

 

| details |

 

Computational mechanics in terms of mixed aleatory and epistemic uncertain random fields

Bild zum Projekt Computational mechanics in terms of mixed aleatory and epistemic uncertain random fields

Bearbeitung:

Mona Madlen Dannert

Förderung durch:

Priority Programme SPP 1886 of German Research Foundation (DFG), State of Lower Saxony

Kurzbeschreibung:

This project investigates probability box (p-box) approach including probabilistic and possibilistic aspects. This way, both kind of uncertainties - aleatory and epistemic - can be considered within a random field.

 

| details |

 

Numerische Simulation probabilistischer Schädigungsmodelle mit der Stochastischen Finite Elemente Methode

 

Leitung:

Prof. Udo Nackenhorst

Bearbeitung:

Dr. Philipp-Paul Jablonski

Kurzbeschreibung:

Numerische Umsetzung diverser probabilistischer Methoden, u.a. Monte Carlo Simulation, Kollokationsmethode oder Polynomial Chaos, für die Berschreibung unsicherer Materialparameter innerhalb verschiedener Schädigungsmodelle in Verbindung mit der Finite Elemente Methode

 

| details |

 

Development of a numerically robust material model for rock salt

Bild zum Projekt Development of a numerically robust material model for rock salt

Bearbeitung:

M. Eng. Mathias Grehn, Prof. Dr.-Ing. Udo Nackenhorst

Kurzbeschreibung:

Around 300000 tons of high-level radioactive waste exists on earth and around 12000 tons of high-level radioactive waste will be added every year. Possible solutions for storage of radioactive waste are salt domes as reservoirs for toxic and nuclear waste.

 

| details |

 

Dynamic properties of heterogeneous materials with uncertain microstructures and local damage

 

Bearbeitung:

Prof. Dr.-Ing. Udo Nackenhorst, M.Sc. Andre Hürkamp

Kurzbeschreibung:

The goal of this research project is the development of novel predictive techniques for damage monitoring in heterogenous materials. Multi-scale modeling techniques are combined with related statistical methods for scale bridging.

 

| details |

 

Investigations on the Numerical Solution of the Fokker-Planck Equation with Discontinuous Galerkin Methods

 

Bearbeitung:

Prof.Dr.-Ing. U.Nackenhorst, Dipl.-Ing. F. Loerke

Kurzbeschreibung:

As the probability density distribution is an appropriate measure for comprehensive description of stochastic processes, the derivation and solution of transport equations for the probability density requires particular attention. Examination of nonlinear dynamic systems under uncertain excitation or with uncertain parameters leads to stochastic equations of motion.

 

 

Stochastic Finite Elements

 

Bearbeitung:

Prof.Dr.-Ing. U. Nackenhorst, M.Sc. P.Jablonski

Kurzbeschreibung:

In vielen ingenieurtechnischen Anwendungen sind nicht deterministische Prozesse und/oder Parameter enthalten. die das Systemverhalten in erheblichen Maßen beeinflussen.

 

| details |