Logo Leibniz Universität Hannover
Logo: Institut für Baumechanik und Numerische Mechanik/Leibniz Universität Hannover
Logo Leibniz Universität Hannover
Logo: Institut für Baumechanik und Numerische Mechanik/Leibniz Universität Hannover
  • Zielgruppen
  • Suche
 

Ph.D. Rene Hiemstra


Wissenschaftlicher Mitarbeiter
Institut für Baumechanik und Numerische Mechanik
Appelstraße 9A
30167 Hannover
Raum: Mehrzweckgebäude (3408) - MZ 802

Fax:+49 511.762-19053
E-Mail:rene.rinke.hiemstraibnm.uni-hannover.de
Homepage:https://www.researchgate.net/profile/Rene_Hiemstra

Bild von Ph.D.  Rene Hiemstra

Research focus

My research focus is on the development and implementation of novel discretization techniques to overcome limitations of today's standard numerical methods in computational structural and fluid mechanics. A central theme in all my research is the improvement of the design-to-analysis process by means of isogeometric analysis. Within this context I have worked on higher order accurate compatible discretization techniques for computational fluid dynamics, developed scalable and efficient formation and assembly techniques for both fluids and structures, and developed surface meshing techniques that improve the exchange between computer aided design (CAD), finite element analysis (FEA) and computer aided manufacturing (CAM).

Education

2019

Ph.D. in Computational Science, Engineering and Mathematics

Oden Institute for Computational Engineering and Sciences

University of Texas at Austin, USA

Supervisor: Prof. Dr. Thomas JR Hughes

Dissertation: https://repositories.lib.utexas.edu/handle/2152/78802?show=full

2015 

M.Sc. in Computational Science, Engineering and Mathematics (2015)

Oden Institute for Computational Engineering and Sciences

University of Texas at Austin, USA

2011 

M.Sc. Marine Technology

Department of Marine Technology

Delft University of Technology, Netherlands

2009 

B.Sc. Marine Technology (2009)

Department of Marine Technology

Delft University of Technology, Netherlands

Journal publications

2020

Hiemstra, RR ., Hughes, TJ, Manni, C., Speleers, H. and Toshniwal, D., 2020. A Tchebycheffian Extension of Multidegree B-Splines: Algorithmic Computation and Properties. SIAM Journal on Numerical Analysis58 (2), pp.1138-1163.            

Toshniwal, D., Speleers, H.,   Hiemstra, RR  ., Manni, C. and Hughes, TJ, 2020. Multi-degree B-splines: Algorithmic computation and properties. Computer Aided Geometric Design76, p.101792.       

2019

 

Hiemstra, RR  , Sangalli, G., Tani, M., Calabrò, F. and Hughes, TJ, 2019. Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity. Computer Methods in Applied Mechanics and Engineering355, pp.234-260.

2018

 

Evans, JA,  Hiemstra, RR  , Hughes, TJ and Reali, A., 2018. Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Computer Methods in Applied Mechanics and Engineering338, pp.208-240.         

Marussig, B.,  Hiemstra, R.  and Hughes, TJ, 2018. Improved conditioning of isogeometric analysis matrices for trimmed geometries. Computer Methods in Applied Mechanics and Engineering, 334, pp.79-110.

2017

 

Toshniwal, D., Speleers, H.,  Hiemstra, RR  and Hughes, TJ, 2017. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering316, pp.1005-1061.         

Hiemstra, RR  , Calabro, F., Schillinger, D. and Hughes, TJ, 2017. Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering316, pp.966-1004.

2015

 

Schillinger, D., Evans, JA, Frischmann, F.,  Hiemstra, RR  , Hsu, MC and Hughes, TJ, 2015. A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. International Journal for Numerical Methods in Engineering, 102  (3-4), pp.576-631.

2014

 

Hiemstra, RR  , Toshniwal, D., Huijsmans, RHM and Gerritsma, MI, 2014. High order geometric methods with exact conservation properties. Journal of Computational Physics257, pp.1444-1471.

Palha, A., Rebelo, PP,  Hiemstra, R.  , Kreeft, J. and Gerritsma, M., 2014. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, 257, pp.1394-1422.